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LETTER TO THE EDITOR

Stochastic resonance in a bistable piecewise potential:
analytical solution

V Berdichevsky and M Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

Received 20 May 1996, in final form 4 July 1996

Abstract. We consider a bistable piecewise potential subject to both a periodic signal and a
random force. The output signal-to-noise ratio (SNR) is calculated for a small-amplitude periodic
signal of arbitrary frequency� and noise strengthD. Our analysis not only recovers the well
known non-monotonic dependence of SNR onD at fixed�, but also predicts the non-monotonic
dependence of SNR on� at fixedD. The latter phenomenon does not appear in the commonly
assumed adiabatic approximation which applies only at low frequencies.

Stochastic resonance (SR) is a phenomenon found in dynamic nonlinear systems driven by
a combination of a periodic signal and a random force. A prototype of a system exhibiting
SR is the one-dimensional overdamped processx(t) where the nonlinearity has the form of
the symmetric double-well potential:

U(x) = −
(

ax2

2
− bx4

4

)
. (1)

Manifestation of SR can be divided into two classes. The first related to such
characteristics of the motion as〈x(t)〉, the autocorrelation function, the power spectrum, or
a signal-to-noise ratio. The mathematical form of such SR is often represented in terms of
Fourier components of these quantities which behave non-monotonically as a function of
the noise amplitudeD generally having a maximum at the frequency� of the external field.
A second group of physically interesting parameters which can show resonant behaviour
are characteristic times exemplified by the reciprocal of the switching rate for transitions
between the wells defined by equation (1). This can also depend non-monotonically onD.

This sort of non-monotonic behaviour has been found in many physico-chemical
and biological systems which are described in numerous articles and summarized in the
proceedings of the conference on SR [1] and recent reviews [2–5].

The solution of the nonlinear equation with (1) as a typical potential is quite complicated.
The most effective approach is the adiabatic approximation which presumes that the
amplitudeA and the frequency� of the external field as well as the noise strengthD

are small,

A, D, � � 1. (2)

The most elegant formulae have been obtained for a two-level system [6] while many
numerical results are related to continuous systems [2]. There are also some different
approaches based on the Floquet-type description [7], perturbation theory [8] and linear
response theory [4].

Many attempts have been made to go beyond limitations of equation (2). Some
interesting results have been obtained using the next order of the adiabatic approximation
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[9, 10] which makes it possible to remove the restriction on� given in equation (2), and to
get analytical results under the conditions

A, D � 1. (3)

The aim of this letter is to obtain exact analytical results for a simple model which
exhibits SR provided that

A � 1. (4)

Our model which allows the analytical solution not only reproduces the known non-
monotonic dependence of SNR as a function ofD for given �, but also shows the non-
monotonic dependence of SNR on� for givenD which, to our knowledge, was never seen
before. It should be noted, however, that the non-monotonic behaviour in� has been found
in numerical simulations for the peaks of the distribution of switching times [11].

Figure 1. The square-well potentialU(x).

We consider a particle moving in the piecewise-symmetric potential shown in figure 1
under the influence of white noise. For this simple potential, we can obtain [12] the exact
solution of the full dynamic problem. In order to obtain SR, one has to add a periodic signal
A cos(�t) to the system which we assume to act on the left potential well as is shown in
figure 1. The form of the periodic signal is such that for half the period, 2π/�, the left well
is deeper than the right well, andvice versaduring the second half of each period. Such a
choice is similar to that of [6] and other papers. A different possibility—a periodic change
of barrier height without changing the relative positions of the wells [13]—will probably
lead to qualitatively similar results.

The Fokker–Planck equation for the probability density functionP(x, t) for the position
of a diffusive particle at timet is

∂P

∂t
= ∂

∂x

[
1

T

∂U

∂x
P + D

∂P

∂x

]
≡ −∂J

∂x
(5)

whereJ is the probability current. For the potential shown in figure 1,∂U/∂x = 0, and
equation (5) reduces to a simple diffusion equation. Our choice for the periodic signal has
the advantage that this signal enters only the matching condition (equation (11)) and not the
differential equation which will not be the case for the potential described by equation (1).

Substituting dU/dx = 0 in equation (5) and performing the Fourier transformP̂ (x, ω) =∫ T

0 P(x, t) exp(−iωt) dt with T → ∞ (we assume thatP(x, t) = 0 at t < 0), one can
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rewrite equation (5) in the following form:

P(x, T ) exp(−iωT ) − P(x, 0) + iωP̂ (x, ω) = D
d2P̂ (x, ω)

dx2
. (6)

For simplicity we assume that initially a particle is located at the left end of the barrier

P(x, 0) = δ(x + a) (7)

although it is physically obvious that the qualitative results will not depend on the precise
initial position of the particle. The asymptotic distribution functionP(x, T )|T →∞ consists
of the stationary distributionS(x) and the small correction termAf (x, t) caused by the
oscillations and which is proportional to their amplitudeA.

Using these results, one can rewrite equation (6) as

[S(x) + Af (x, T )] exp(−iωT ) − δ(x + a) + iωP̂ (x, ω) = D
d2P̂ (x, ω)

dx2
. (8)

In each of the three intervals in figure 1, the solution of equation (8) has the form

P̂m(x, ω) = Cm exp(rx) + C ′
m exp(−rx) − Sm

iω
exp(−iωT ) + Agm(x, T ) exp(−iωT ) (9)

wherem = 1, 2, 3, r = √
iω/D, and the asymptotic probability to be in a given interval is

proportional to the length of the interval multiplied by exp(U/D), whereU is the potential
barrier in this interval, i.e.

S1 = S3 = K−1 S2 = K−1 exp

(
U

D

)
whereK = 2a + ak exp

(
U

D

)
. (10)

Explicit forms of the functions gm(x, T ) are not essential in what follows.
Six constantsCm andC

′
m, for m = 1, 2, 3, can be found from matching at the boundaries.

We assume reflecting boundary conditions at the walls,J (x = 0, t) = J [x = a(k + 2), t ] =
0. The matching at the boundaries of the barrier is performed by requiring the probability
currentJ to be continuous, whileP(x, t) has finite jumps, [14]

P(x − 0, t) exp

(
U (x − 0)

D

)
= P (x + 0, t) exp

(
U (x + 0)

D

)
at the boundariesx = a andx = a(k + 1). Let us specify one of the boundary conditions
at x = a:

P1 (a, t) exp

(
A

D
cos(�t)

)
= P2 (a, t) exp

(
U

D

)
. (11)

Performing the Fourier transform of equation (11), taking into account that for small
A the Fourier transform ofP(t) exp[(A/D) cos(�t)] equalsP̂ (ω) + (A/2D)[P̂ (ω + �) +
P̂ (ω − �)] and substitutingP̂1 and P̂2 from equation (9), one can reduce equation (11) to
the following form, up to linear terms inA,

[ψ2(r) + Ag2(a, T ) exp(−iωT )] exp

(−U

D

)
= ψ1(r) + Ag1(a, T ) exp(−iωT ) + A

2D
[ψ1(r

′) + ψ(r ′′)] (12)

where

r ′ = i(ω − �)

D
r ′′ = i(ω + �)

D
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and

ψm(r) = Cm(r) exp(ar) + C ′
m exp(−ar) + Sm

iω
exp(−iωT ).

Adding to equation (12) five additional matching conditions, one can obtain Cm and
C ′

m, m = 1, 2, 3. A straightforward but tedious calculation yields, for the Fourier transform
of x at frequency� of the external field,

x(ω)|ω=� ≡
∫ a

0
xP̂1(x, ω → �) dx +

∫ a(k+1)

a

xP̂2(x, ω → �) dx

+
∫ a(k+2)

a(k+1)

xP̂3(x, ω → �) dx = N + Sδ(ω − �). (13)

We define the SNR in a way similar to [4], namely,|S/N |2. There exist other definitions
of the SNR, mostly based on the power spectrum of the signal [2–6]. All such definitions
of the SNR will show similar properties.

Thus, we finally arrive at the following result:

SNR= |S/N |2 (14)

where
S

N
= −πrAa−1 eU/D[era − 1][era(1+k) − 1][2 eU/D + k]−1

×{eU/D[era − 1][erak − 1][era(1 − ra) − (1 + ra)]

−[e2ra + 1][erak(1 + ra) − (1 − ra)]}−1. (15)

Notice that equations (14) and (15), obtained to first order of the amplitudeA of the
periodic signal, hold for arbitrary values of the dimensionless parametersk, (U/D) and
|ra| = (�a2/D)

1
2 , which determine the width of the potential barrier, its height and the

frequency of the external signal, respectively. In particular, our results hold for(U/D) < 1
and� > 1, when the Kramers approximation does not apply.

The most interesting results from the general expressions (14) and (15) are the limiting
forms for small((�a2/D) � 1) and large((�a2/D) � 1) frequencies of the external
signal:

SNR|(�a2/D)�1 ≈ π2A2�2(1 + k)2 exp(2U/D)

4D2[exp(U/D) + k]2(2 + k)2
(16)

SNR|(�a2/D)�1 ≈ π2A2 e2U/D

a4(2 eU/D + k)2(eU/D + 1)2

[
1 +

√
2D

�a2
tanh

(
U

2D

)]
. (17)

As seen from equations (16) and (17), the SNR increases initially as�2, and then
reaches the limit value from above, i.e. the SNR has a maximum for some intermediate�.
In figure 2, we show the SNR defined by equation (14) as a function of frequency� for
different noise strengthsD ranging from 0.5 to 4.

In figure 3, we show the usual manifestation of SR, namely, the non-monotonic
dependence of SNR on noise strengthD for different frequencies� ranging from 0.5
to 10. As expected, the resonance maximum occurs atD ' U .

The only assumption made in obtaining equation (14) is the smallness of the amplitude
A of the periodic signal, while no restrictions have been imposed on the comparative values
of three characteristic frequencies arising in our problem, namely the frequency of internal
oscillationsωin = D/a2, the Kramers frequency [12],ωkr = (D/a2(k + 1)) e−U/D, and the
frequency� of the external signal.
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Figure 2. The signal-to-noise ratio (SNR) as a function of the frequency� of the external
signal for different strengths of noiseD for U = 1.2 andk = a = 1.

Figure 3. The signal-to-noise ratio (SNR) as a function of the strength of the noiseD for
different frequencies� of the external signal forU = 1.2 andk = a = 1.

In order to reduce our result to the adiabatic approximation, one has to rewrite
equation (14) in the Kramers limit of small noise,ωkr < ωin, which gives

S

N
= −πA(k + 1)ωkr

2a2ωin

ra[era(1+k) − 1]

[erak − 1][era(1 − ra) − (1 + ra)]
. (18)

The adiabatic approximation means that the external frequency� is smaller than the
characteristic frequencies of the problem which in our case results inra � 1. Then,
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one obtains for the SNR

SNR≈ π2A2(1 + k)2

4a4k2
e−2U/D. (19)

This limit form is exponentially small inU/D and remains a monotonic function ofD in
contrast to the two-level problem [6].

In the opposite non-adiabatic case of high external frequency�, � � D/a2, the limit
forms of SNR for narrow(k � 1) and wide(k � 1) barriers are

SNR=


π2A2D

4a6�k2
e−2U/D for k � 1

π2A2

4a4
e−2U/D for k � 1.

(20)

We hope that our main analytical result—the non-monotonic behaviour of the SNR as a
function of the frequency of the external signal—will find use in applications of SR.
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